Analysis for stress environment in the alveolar sac model
نویسندگان
چکیده
Better understanding of alveolar mechanics is very important in order to avoid lung injuries for patients undergoing mechanical ventilation for treatment of respiratory problems. The objective of this study was to investigate the alveolar mechanics for two different alveolar sac models, one based on actual geometry and the other an idealized spherical geometry using coupled fluid-solid computational analysis. Both the models were analyzed through coupled fluid-solid analysis to estimate the parameters such as pressures/velocities and displacements/stresses under mechanical ventilation conditions. The results obtained from the fluid analysis indicate that both the alveolar geometries give similar results for pressures and velocities. However, the results obtained from coupled fluid-solid analysis indicate that the actual alveolar geometry results in smaller displacements in comparison to a spherical alveolar model. This trend is also true for stress/strain between the two models. The results presented indicate that alveolar geometry greatly affects the pressure/velocities as well as displacements and stresses/strains.
منابع مشابه
Analysis of stress distribution in the alveolar septa of normal and simulated emphysematic lungs.
The alveolar septum consists of a skeleton of fine collagen and elastin fibers, which are interlaced with a capillary network. Its mechanical characteristics play an important role in the overall performance of the lung. An alveolar sac model was developed for numerical analysis of the internal stress distribution and septal displacements within the alveoli of both normal and emphysematic salin...
متن کاملمقایسه نسبت های مختلف طول تاج به طول ایمپلنت (Crown: Implant) در تنش های وارد به استخوان آلوئول به روش اجزای محدود
Preservation of bone-implant interface is vital for maintaining of implant treatment. There are some cases in which crown to fixture ratio is increased due to loss of residual ridge. In this condition knowledge of stresses acting over alveolar bone is important in regard to prognosis of treatment. In this study three different crown to fixture ratios evaluated under lateral forces considering s...
متن کاملStress distribution in a three dimensional, geometric alveolar sac under normal and emphysematous conditions
Pulmonary emphysema is usually the result of chronic exposure to cigarette smoke in at risk individuals. To investigate the hypothesis that lung damage in emphysema results from coincident weakening in the structural properties of the tissue and increased mechanical forces--as one explanation of the continued development of pulmonary emphysema after smoking cessation--we developed a three dimen...
متن کاملInvestigation of the Effects of Emphysema and Influenza on Alveolar Sacs Closure through CFD Simulation
Emphysema and influenza directly affect alveolar sacs and cause problems in lung performance during the breathing cycle. In this study, the effects of Emphysema and Influenza on alveolar sac’s air flow characteristics are investigated through Computational Fluid Dynamics (CFD) simulation. Both normal and Emphysemic alveolar sac models with varying collapsed volumes resulting from influenza viru...
متن کاملTernary Phase Diagram Modeling of Chiral Medetomidine Salts Using NRTL-SAC Model
Experimental determination of solubility and ternary phase diagram of chiral compound are of tedious and time consuming tasks, and in many cases, there is not enough experimental data for different enantiomeric compositions to access the experimental ternary phase diagram. Using thermodynamic models with predictive capability, having less dependency on experimental data, affords a great advanta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2013